Seed Storage Characteristics and Germination of Select South Florida Native Plant Seeds Anne Frances Fairchild Tropical Botanic Garden July 2004

Species	Seed storage requirements	Seed viability and longevity	Germination requirements
Aletris bracteata	Unknown	Germination is relatively easy under mist, but seedlings are very slow growing (Wilsdon pers. obs. in Wendelberger 2004).	Unknown
Amorpha herbacea var. crenulata	germinated at between 21% and 24% after cryogenic storage (Carrara 2001).	germinated at about 50% in 12 days. Fresh wild-collected seed with fruit coat removed (by hand) germinated at about 85% in 12 days (Fidelibus and Fellows 2002). In another study, fresh seeds (with fruit coat intact) from the <i>ex-situ</i> collection germinated readily within one week of sowing on soil-less media, with germination values ranging from 60% to 84% after 7 weeks (Carrara 2001).	Removal of fruit coat increased both rate and percent of germination (but length of experiment was only 14 days). Fruit coat appears to be a physical rather than chemical or other type of barrier. Percent germination of fruit that had dehisced naturally versus fruit retained on infructescence was similar (Fidelibus and Fellows 2002). Wild collected fruit had 29% unhealthy appearing seed versus <i>ex-situ</i> collected fruit had 11% unhealthy appearing seed based on visual inspection (Fellows 2002a).
Crossopetalum ilicifolium	Unknown	Fresh seed germinated at 24%. Seed stored 1 and 3 months did not germinate (Fairchild unpublished)	Unknown
Harrisia aboriginum	Not recalcitrant. Seeds that had been desiccated for three days and frozen for 16 hours germinated (Frances unpublished). Experiment should be repeated with prolonged time in freezer to confirm that seeds are orthodox.	· · · · · · · · · · · · · · · · · · ·	Unknown
Harrisia fragrans	16 hours germinated (Frances unpublished). Experiment should be repeated with prolonged time in freezer to confirm that seeds are orthodox.	germinated at 16-50% (Frances unpublished.) Germination of fresh seeds varied by	A sulfuric acid treatment increased the rate and percentage of germination (Fisher 2002). Perez (2001) found that acid scarification followed by soaking in gibberellic acid sigificantly increased germination rate and percentage.

Harrisia simpsonii		Fresh seeds germinate readily (Frances unpublished). Seeds that had been stored 4 years at room temperature germinated at 93% (Frances unpublished.)	Unknown
lpomoea microdactyla	Unknown	germination rate (Geiger 2004).	For fresh seed (i.e. removed from undehisced fruit as the capsules turn from green to brown), no scarification of seed coat or water soaking necessary for high seed germination rates (Geiger 2004).
Jacquemontia reclinata	Preliminary results from a current experiment indicate that seeds are orthodox. Seeds in storage at -20°C for 3.5 years are germinating at about 10- 50%, higher than seeds stored at 12°C or 23°C. Percent seed moisture content (SMC) did not seem to affect germination. Seeds dried to 5% SMC before storing germinated (Frances unpublished data in Wright 2004a).	germination of >50% was common (Carrara and Garvue 2003). Seeds stored for five years under ambient conditions remained viable with 19-42% germination in four trials (Carrara and Garvue 2003).	Soaking of seeds prior to sowing did not affect rate or percent of germination, even though a yellow pigment was leached from the seeds (Fidelibus and Fisher 2003). Seeds did not need light to germinate (Fisher 2003). Soaking in seawater did not affect germination (Griffin and Fisher 2003). Seedlings required arbuscular mycorrhizal fungi under natural soil conditions or where phosphorus is limiting (Fisher and Jayachandran 2002).
Okenia hypogaea	Unknown	an area that has not had <i>O. hypogaea</i> plants in over 5 years (Fernandez pers. comm.). Seeds of fruit harvested in February	Germination or seedling emergence are not affected by depth of planting between 1 and 12m (Fisher unpublished). However, fruits may require at least 4-5cm of burial by sand for growth (Iverson 2004). Seeds do not need light to germinate (Fisher unpublished).

Polygala smallii		would not germinate; however, 80-100% of older, buried seeds germinated (without regard to seasonal photoperiod). In another study, seeds that had been soaked in water	Seeds are difficult to germinate under standard horticultural conditions: ample soil moisture and aeration is crucial, mold is problematic, and fungicide kills plants (Koptur et al. 1998). Seeds germinated best on moist silica under indirect sunlight and ambient photoperiod (Koptur et al. 1998). Fresh, wild collected seeds showed 50% greater germination following soaking in a smoke extract (Koptur et al 1998). Fellows (2002b) found that smoke treatment of seeds increased the rate of germination (peak germination at 12 days with smoke versus at 26 days without smoke) but not percent germination which ranged from 71 to 86%. Kernan et al. (1999) found that seeds buried > 2cm will develop dormancy.
Pseudophoenix sargentii	methods, but more research is needed to determine if drying and freezing actually increase the length of time seeds remain viable. Seeds that had been dried to 5% SMC germinated (Carrara 2001). Seeds normally withstand much drying prior to germination (Read 1961). Seeds that had been stored for 12 months total, 6 months at 23°C and 6 months in -20°C, germinated at 8 percent. These seeds were not desiccated before storage, but may have dried to a low SMC during the 6 months of ambient temperature storage. Endocarps were removed prior to sowing (Carrara 2001; Fairchild unpublished).	was highly variable among treatments and seed source (Carrara 2001). In some cases percent germination was higher after 3-6 months of storage (Carrara 2001). In their natural habitat, fruits fall during the dry season and a 3-6 month period of dormancy would enable seeds to germinate during the rainy season. Additionally, the mechanical action to remove the fruit flesh and endocarp (thought	In many cases removal of the endocarp improved germination (Carrara 2001). Soaking did not improve germination after storage (Carrara 2001.) Read (1961) found temperature to be an important factor in germination. Seeds held at a constant 85° F germinated consistently at 90% whereas those seeds in the greenhouse, where temperatures ranged from 60-90°F, germinated at 0-10%. Fungal disease affected seedling development in germination trials in soil and agar media (Fairchild unpublished). Pure perlite produced the healthiest seedlings, preventing damping- off which occurred with other media (Read 1961).

Tephrosia angustissima var. corallicola	Orthodox. Percent germination of seeds stored for 3 and 6 months at - 20°C ranged from 95-100 and 73-90, respectively. Seeds dried to 5% SMC before storing germinated (Fairchild unpublished).	In four of these trials, percent germination was 100, and in only one trial percent germination was less than 50. Percent germination of	Fresh seeds germinated in light under mist within one week (Fisher unpublished). Carrara (2001) found that maximum germination of fresh seed was attained after two weeks. Stored seeds sometimes took longer to germinate than fresh seeds. Four weeks should be sufficient to achieve maximize germination for this species (Carrara 2001). Because germination is generally high, little research has been conducted to improve germination.
Zanthoxylum coriaceum		Germination of untreated fresh seed ranged from 2 to 32%. Seeds in storage for 3 and 6 months showed little decline in viability (Fairchild unpublished).	Percent germination of fresh seed increased (17-65%) with a pretreatment of scarification with sandpaper combined with soaking, although percent germination was not significantly different than untreated seeds (2- 32%) (Fairchild unpublished).
Zanthoxylum flavum	Orthodox. Seeds in cryogenic storage had 4% germination. (Carrara 2001)	filled, but this percentage of empty seeds does not fully account for the low germination percentage (Carrara 2001). Seeds in storage at ambient temperatures are usually predated	Scarified seeds (both fully and partially scarified) absorbed water more rapidly than non-scarified seeds, although rate of water absorption was slow compared to other species (Fidelibus unpublished). Warm- stratification treatments did not promote seed germination (Perez 2001).

SMC= Seed Moisture Content

All germination trials were conducted in the greenhouse or laboratory, unless otherwise stated. In most germination trials, seeds were sown on soil or a soil-less medium, and germination was defined as the emergence of the shoot. A few germination trials used filter paper in petri dishes (see Fellows 2002b, Fidelibus and Fellows 2002, and Fidelibus and Fisher 2003) and germination was defined as the emergence of the radicle. For more detailed information about the germination trials, please consult the original document. For more information concerning unpublished Fairchild data, please contact the conservation team at Fairchild.

References:

Carrara, S. 2001. Species specific seed germination methods, storage condition trials, and cultivation notes. *In:* Fellows, M., J. Possley, and C. Lane. (ed.). 2001. Final Report to the Endangered Plant Advisory Council, Florida Department of Agriculture and Consumer Services, FDACS Contract # 005619.

Carrara, S., and D. Garvue. 2003. Determine the response of *J. reclinata* to standard seed storage conditions. *In* Maschinski, J., S. J. Wright, and H. Thornton (ed.). 2003. Restoration of *Jacquemontia reclinata* to the South Florida ecosystem. Final report to the United States Fish and Wildlife Service for grant agreement 1448-40181-99-G-173.

Fellows, M. 2002a. *Amorpha herbacea* var. *crenulata* seed production. *In:* Maschinski, J., M.Q.N. Fellows, and J. Possley (ed.). Final Report to the Endangered Plant Advisory Council, Florida Department of Agriculture and Consumer Services, FDACS Contract # 006466.

Fellows, M. 2002b. Smoke treatment of *Polygala smallii* seeds. *In:* Maschinski, J., M.Q.N. Fellows, and J. Possley (ed.). Final Report to the Endangered Plant Advisory Council, Florida Department of Agriculture and Consumer Services, FDACS Contract # 006466.

Fidelibus, M. and M. Fellows. 2002. Germination of *Amorpha herbacea* var. *crenulata* seed. *In:* Maschinski, J., M.Q.N. Fellows, and J. Possley (ed.). Final Report to the Endangered Plant Advisory Council, Florida Department of Agriculture and Consumer Services, FDACS Contract # 006466.

Fidelibus, M., and J. Fisher. 2003. Effect of soaking seed in fresh water and removing seed coat pigment upon germination. *In* Maschinski, J., S. J. Wright, and H. Thornton (ed.). 2003. Restoration of *Jacquemontia reclinata* to the South Florida ecosystem. Final report to the United States Fish and Wildlife Service for grant agreement 1448-40181-99-G-173.

Fisher, J.B. and K. Jayachandran. 2002. Arbuscual mycorrhizal fungi enhance seedling growth in two endangered plant species from South Florida. International Journal of Plant Science. 163(4): 559-566.

Fisher, J.B. 2002. Effect of sulfuric acid treatment on Harrisia fragrans seed germination. In: Maschinski, J., M.Q.N. Fellows, and J. Possley (ed.). Final Report to the Endangered Plant Advisory Council, Florida Department of Agriculture and Consumer Services, FDACS Contract # 006466.

Fisher, J.B. 2003. Effect of light and dark on seed germination. *In* Maschinski, J., S. J. Wright, and H. Thornton (ed.). 2003. Restoration of *Jacquemontia reclinata* to the South Florida ecosystem. Final report to the United States Fish and Wildlife Service for grant agreement 1448-40181-99-G-173.

Garvue, D. and S. Carrara. 2001. Seed storage and germination research at Fairchild Tropical Garden. Final Report to the Institute of Museum and Library Services for grant agreement IC-90218-99.

Geiger, J. 2004. Conservation Action Plan: *Ipomoea microdactyla. In* Maschinski, J., K.S. Wendelberger, S.J. Wright, H. Thornton, A. Frances, J. Possley and J. Fisher. 2004. Conservation of South Florida Endangered and Threatened Flora: 2004 Program at Fairchild Tropical Garden. Final Report Contract #007997. Florida Department of Agriculture and Consumer Services, Division of Plant Industry, Gainesville, FL. July 2004.

Griffin, K., and J. Fisher. 2003. Effects of salt water on seed germination. *In* Maschinski, J., S. J. Wright, and H. Thornton (ed.). 2003. Restoration of *Jacquemontia reclinata* to the South Florida ecosystem. Final report to the United States Fish and Wildlife Service for grant agreement 1448-40181-99-G-173.

Iverson, G.B. 2004. Endangered burrowing four-o'clock. In: K. Burks, ed. Rare and Endangered Biota of Florida, Volume 5: Plants. University Presses of Florida, Gainesville, Florida.

Kernan, C., S. Kennedy and S. Koptur. 1999. Buried seed banks and the conservation of *Polygala smallii*, an endangered south Florida herb. Unreferenced report on file at Fairchild Tropical Garden.

Koptur, S., C. Kernan, and S. Kennedy. 1998. Final Report for the Project: Feasibility of Relocating Tiny Polygala. State Study No. 0745, WPI # 0510745, State Job No. 99700-3308-010, Contract No. B-9919.

Perez, H. 2001. Germination of six Florida endangered species. Master's Thesis. University of Florida.

Read, R. 1961. A study of the genus *Pseudophoenix*. Master's thesis. Cornell University.

Wendelberger, K. 2004. Conservation Action Plan: *Aletris bracteata*. *In* Maschinski, J., K.S. Wendelberger, S.J. Wright, H. Thornton, A. Frances, J. Possley and J. Fisher. 2004. Conservation of South Florida Endangered and Threatened Flora: 2004 Program at Fairchild Tropical Garden. Final Report Contract #007997. Florida Department of Agriculture and Consumer Services, Division of Plant Industry, Gainesville, FL. July 2004.

Wright, S.J. 2004a. Conservation Action Plan: *Jacquemontia reclinata*. *In* Maschinski, J., K.S. Wendelberger, S.J. Wright, H. Thornton, A. Frances, J. Possley and J. Fisher. 2004. Conservation of South Florida Endangered and Threatened Flora: 2004 Program at Fairchild Tropical Garden. Final Report Contract #007997. Florida Department of Agriculture and Consumer Services, Division of Plant Industry, Gainesville, FL. July 2004.

Wright, S.J. 2004b. Conservation Action Plan: *Okenia hypogaea. In* Maschinski, J., K.S. Wendelberger, S.J. Wright, H. Thornton, A. Frances, J. Possley and J. Fisher. 2004. Conservation of South Florida Endangered and Threatened Flora: 2004 Program at Fairchild Tropical Garden. Final Report Contract #007997. Florida Department of Agriculture and Consumer Services, Division of Plant Industry, Gainesville, FL. July 2004.